
Journal ofPhotochemistry, .39 (1987) 173 - 200 173 

A TJ3EORETlCAL STUDY OF TWO-COLOR PHOTOIONIZATION 
AND AUTOIONIZATION OF MOLECULES 

S. H. LIN and A. B0EGLJ.N 

Department of Chemiefry, Arizona St&e Uniuereity, Tempe, 

s. M. LIN 

InsMute uf Atomic and Mokcukr Science. Academia Sinica 

(Received January 22,1987) 

AZ 8628 7 (US.A,) 

(Taiwan) 

The main purpose of this paper is to apply the density matrix formalism 
for treating multiphoton ionization of multirovibronic level systems. Both 
direct photoionization and photoionixation through autoionization states 
are taken into account. Numerical results will be presented fordemonstrating 
the effect of the interference resulting from the’ neighboring rovibronic 
levels. The theoretical results are applied to interpret two sets of experi- 
mental data on two-color photoionixation of molecules; one set is for two- 
color threshold photoionization spectra of jet-cooled aniline which exhibit 
autoionizing Rydberg structures and the other is for high resolution Rydberg 
spectra of Hz by stepwise resonance two-photon ion-pair (H+ + H-) produc- 
tion. 

1. Introduction 

Two-color photoionization studies have provided important insights 
into studies of the properties of highly excited states of molecules, such as 
the precise determination of ionization energies and lifetimes of excited 
states, the de-ion of autoionizing states and the investigation of photo- 
fragmentation phenomena El]. By using resonant two-photon excitation, 
the weak transition probabilities due to small Franck-Condon factors for 
single-photon excitation can be greatly improved. New excited states whose 
transitions cannot be easily reached from the ground state can be studied. 
For small molecules, the spectrum can also be simplified by selective 
labelling of the rotational states. 

In previous papers [2,3], we have developed a density matrix formalism 
for treating one-photon ionization and two-photon ionization of molecules. 
We have shown that Fano’s results [4] for one-photon autoionization can 
be reproduced by this formalism. It has also been shown that this density 
matrix method can treat two-color photoionization spectroscopy and the 
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measurement of excited state lifetimes by the multiphoton ionization tech- 
nique. 

In this paper, we shall extend this density matrix method to take into 
account the multilevel effect on one-photon and two-photon ionization of 
molecules and apply the theoretical results to the analysis of some recent 
experimental data. It should be noted that in our previous papers [Z, 31 for 
one-photon ionization we considered only two discrete levels and for two- 
photon ionization we considered only three discrete levels. In this paper, the 
effect of the existence of multirovibronic levels in the ground and excited 
electronic states is taken into account. 

2. Theory 

It has been shown that the master equations (MEs) for the photo- 
ionization of molecules in the Markoff approximation can be expressed as 
c2931 

%an * 
- + ; ~uiAwd&n- at Pnmv,,) + c ErPmm+ c CRiiE%nm~ = 0 

m m m ??I’ 

and 

ap?nn 
at 

+ (iti, + lTE)p- f ; 5 (V_#P??aJ” - J&nm#Vm,) 

+ cc R&+P~I~I = 0 
m’ n’ 

where 

R 2 = &nJ_e f &_, J&a 

=$zj 

f 

J ?nn’ dr V,(t)Vcml(t -T) exp -i s da, ~crn’(tl) 
CO f--r 

and 
f=fi+O 

(2-l) 

(2-2) 

(2-3) 

(2-4) 

(2-5) 
Here if represents the perturbation for inducing autoionization and fi denotes 
the interaction hamiltonian between the system and the radiation field. 
In eqns. (2-1) and (2-2), the I’M are the relaxation rate constants and r= 
represents the depbasing rate constant. In eqn. (2-4), the summation over c 
refers to the continuum states above the ionization threshold. 

For convenience, we shall present the theoretical treatment of one- 
photon ionization and two-photon ionization of multilevel systems separately. 
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2.1. One-photon ionization 
we shall let n denote a vibronic (or a rovibronic) level in the ground 

electronic state g and m represent a vibronic (or a rovibronic) level in the 
excited electronic state a (we Fig. 1). The MEs in this mse are 

%nn 
at 

~rm.KwJ + RE%m + RE’P,, 

+RE~,.,+~r~p,=0 
k 

and 

aPmn 
at 

+ (iw, +rm”+Rz)p_+ $cin(pnn-~) 

+Rzp,,,,+R”h=Q 

(2-6) 

(2-V 

where ZkrM’$&plrk and &l-‘zpkk include both electronic relaxation and 
vibrational relaxation. For convenience we shall ignore the inverse electronic 
relaxation. 

I / 
I / 
I / 

n I / 

9 

Fig. 1. One-photon ionization. 
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Applying the steady state approximation to eqn. (2-8) yields (Appen- 
dixA) 

ap?l?l - + (R at “,E +A,)p, + C A-p,, + c rF& + 2 %“hrw = 0 (2-9) 
m m n’ 

ham 
at + (R”” +A,,,,,,)&,,,, + ~Ampnn+~I-~'pm~m~ - zl--Ep- = 0 

n m’ n 

(2-10) 

where the FE represent electronic relaxation rate constants, while Fe’; 
FI’“’ etc. denote vibrational relaxation constants. Other quantities in eqns. 

&!%I and (2-10) are defined as follows: 

il~~lfi1-~)19m>l*(1 -ii/ad2 
i(o,---uw)+r~+R~ 

(2-11) 

&=A_=-+ il(?Zll3(--0)1@~)1*(1+ 1/qm2) 
i(o,-GJ)+r~+R~ t 

(2-12) 

A 
i l~~ml15~w)ln>12~1 + ikd2 

mm =$zlm\ i(o_-u)+rz+RE 1 (2-13) 
” 

and 

In this case, the photoionization yield Y(t) is given by 

(2-14) 

(2-15) 

ah 
Y(t) = - c - - 

n at ga+ 
= Zi R~++A,+~&rm 

n m 
)~,,n+~(RLZE+&m+~h.m)~mm (2-W 

The integrated yield (or efficiency) is defined by 

W)=1-_CP?m- CP- 
n m 

(2-16A) 
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In the weak intensity and short time regime, we can ignore the excited state 
distributions p,,,,,, 

Y=CRZ--& 
n [ 

(l/hdWk - 0) + W~m2WCXr) + CKXr)l 

m Mwl - w)" + Cl?=(r) + R”(rjj2 

X I(~l~(W)I&n)12 
I 

Pm (Z-17) 

where FE(r) and R=(r) represent the real parts of I’= and RE respectively, 
and determine the bandwidth of Y ~0. w; the imaginary portions of FE and 
Rz which determine the band shift of Y vs. w have been included in wk 
(see Appendix A). 

For the weak field case, if we can apply the steady state approximation 
to JI,- given by eqn. (2-lo), then substituting the resulting p,_ into eqn. 
(2-16) we obtain 

(2-17A) 

where w_ = -x,rr represents the electronic relaxation of the mth level. 
Here the vibrational relaxation terms &,Jm~'pmlm~ have been ignored; this 
approxikation is valid only when the vibrational relaxation is very slow or 
when the vibrational equilibrium is established. When W,, * R; eqn. 
(2-17A) reduces to eqn. (2-17) and when W,, Q Rz eqn. (2-17A) reduces to 

Y= ~W~+&nhn (247B) 
n 

which exhibits the Fano-type bandshape (cf. eqn. (2-20)). 
According to the theoretical analysis of the two-discrete-level model of 

one-photon ionization of molecules, for the weak-field case, and in the short 
time region 133, the approximate expression for Y given by eqn. (2-17) is 
more accurate then that given by eqn. (2-17A). 

Notice that Rg and RE denote the direct photoionixation rate and 
the autoionization rate respectively, that is 

RM= nn 

and 

R-z mm 

(2-18) 

Equation (2-17) shows that the photoionization yield consists of two parts, 
the contribution from the direct photoionization Rz and the contribution 
through autoionization A, + ZmA, (or A, if eqn. (2-17B) is valid). The 
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latter contribution gives us the Beutler-Fano asymmetric bandshape of 
photoionization. From eqn. (2-g), we can see that the rate constant 

K,,=R”,“+A, (2-9A) 
represents the depletion rate of the nth level of the ground electronic state 
through the ionization channel, and again K,, consists of the contributions 
from the direct photoionization and fiorn autoionization A,. Notice that 
A, can be rewritten as 

A fi: c 
(1 - uLm2 )CCXr) + REXr)l - (2hrdWk - W =- nn 

bL?l- w)’ + {I’z(r) + R=(r)}2 

x I~nllS(-Wlha~12 (2-1sA) 

where w&, = o, + Rz (i) + l? E(i). Defining the detuning 

(2-113) 

eqn. (2-1lA) becomes 

Notice that (am2 - 1 + 2q,e,,)/(l+ E,~) is the lineshape expression 
derived by Fano 141. However, the physical meanings of Fano’s expression 
and ours are somewhat different. In Fano’s case, the spectral linewidth is 
due to autoionization only while in our case the spectral linewidth consists 
of the contribution from the lifetimes of the n-level and the m-level and 
pure dephasing through r=(r) and the contribution from the rates of direct 
photoionixation and autoionixation through Rz (r). 

2.2. Two-photon ionization 
Figure 2 shows the energy level scheme for two-color two-photon 

ionization of molecules. That is, we let I, n and m represent the rovibronic 
(or vibronic) levels of the ground electronic state, first excited state and 
second excited state respectively. The equations of motion for the diagonal 
elements prz, A, and hrn are given by 

(2-21) 

(2-22) 
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m A 
m . 

Fig. 2. Two-color, two-photon ionization. 

+~r”_p*=o 
k 

(2-23) 

Using eqns. (2-3) - (2-5) and eqn. (A-2) of Appendix A, eqns. (2-21) - (2-23) 
become 

and 

(2-25) 

(2-26) 
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where 

I#,>= Im>+ (2-27) 

(2-28) 

a:,= 
w3(-~2~21 J/,1 

(m/R) ~D~(-w2)2 ucms(w* - WC” 1 
(2-29) 

c 

and 

Qnm =, 
(4a--2)2I$m) 

(a/h) C Dnc(--w2)2ucms(0cm) 
(2-30) 

c 

The c&rivation of eqns. (2-24) - (2-26) is similar to that for the one-photon 
ionization case given in Appendix A. 

Next we consider the equations of motion for the off-diagonal density 
matrix elements 

(2-31) 

ak-k . 

at + (iw, +rE+Rm”)hr,+ f Km(Pnn -f&am) 
. 

-_~Pm’V;“+(R~~+R~P~)=O 

These expressions can be simplif‘ied (see Appendix B) as 

ahh.d 
. 

at + IiWd - WI) + r:: + R”,:hd~~) + 

(2-33) 

--PM) 

(2-34) 
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apmlwl + w2) 
at + Ci(wm1- Wl - 02) + rzi + Ksmr(w, + 02) 

ab(W2) 
at 

+ {i(w, - W2~+czt+~nrn~hnn(~2) 

- $D”‘- 
. 

Wl)lPm,W, + 021 + 
I 

+ (rLmI@~2)2ln) 1 
(-id, 

. . 
-+(#mIfi(~2)2l~) I+ L &m = 0 

( 1 Q?L?Pt 
(2-36) 

where, for example, &(wl), = (n I fi( w 1)1 I I). This completes the derivation 
of the generalized MEs for two-photon ionization of molecules. Here the 
only main approximation that has been introduced is the rotating wave 
approximation. 

A computer program for solving these generalized MEs has been 
developed by us. In the following we shall present the analytical results for 
an important case. Applying the steady state approximation to pm(02), 

&z(Wd ad Prnt(Wl+ ~21, we find 

PmnW2) = f 
‘1 

w,I~,(~2),I~> 
( 
1 + 

-wtm~*)2l~~ I- 
( 

i 
-&rim 
9 nm 1 

i 
- Pnn J7?rm(w2) 
dam 1 t 

and 
. 

Pml(Wl + W2) = ; enr(w1 + w2)C Pmrtw2mlzw1h 
n 1 

- (1Lmlfi(W2)2ln) 1 - ( 2) P&)[ 

where for example 

J??mbJn) = 
1 

i(w, - 02) + FE +Rz 

(2-37) 

(2-38) 

(2-39) 

(2-40) 
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‘), off-diagonal terms such as DI,(-~l)l~mI(w, + w2) 
obtaining eqn. (2-38) the of&diagonal terms such as 

(nlfi(-&2)21q5m)~l(~I + w,) were neglected. Substituting eqns. (2-37) and 
(2-38) into eqn. (2-39) yields 

In obtaining eqn. (2-37 
were neglected and in 

i ’ 
Pnal(Wl + w2) = h ( 1 

F,l(Wl + w2)C F,,(W2)~,l(~l~l(~,I~(~Z)ZI~~ 
n [ 

i 
x 1+- ( > &WI - P,CF,,(Wz) + &W,~3($m lw421~> 

x kq 

nm 

i 

iis ) 
D,i(WII* + FnL(W1){3/rnIfi(W2)21~) 

(2-41) 

The validity of this approximation is examined in Appendix C. 
By using eqns. (2-37) - (2-41), we obtain the MEs for ~11, pnn and pm as 

(2-42) 

(2-43) 

and 

aPmm 
- + {R”” + A~(wz)h,m + Cknn(wz)h - c rii?‘Pmm 

at n n 

= $ Iab4M2 (w;J 

W(r) + KW 
- w)~ + {r;{(r) + R”,:(r))* 

(2-44) 

(2-46) 



&m(~d = - $ Im~i~,,(w2)31{~l~(--2)21#m}12 

x Mrm 
CEXr) + JCW 

- ~2)~ + {I’=(r) + Rz(r)}2 

x (1--1/am*WiXr) + GXr)l + Wq,,)(w2 - w&J 
M?C aI2 + UTXr) + RRXr)32 

x (1 - llqm2Hr EXr) + KW)3 - CW,,)(w2 - 4.d 
bdIZ?T wd2 + ~JXi#r) + Rii2W2 
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(2-46) 

(2-47) 

(2-46) 

From eqns. (2-42) - (2-44) we obtain the differential yield of photo- 
ionization as 

( h hln Y(t)=-p- +c-- ham 
1 at ?I at +c-- 

m at 1 
= 4 RZ +Ai,,&ol + c &tn(W pm 

n m t 

f C JGi + 4nmlo2) + C&,,(WZ) 
I t 

pmm (2-w 
m n 

For the weak field-weak field case [ 33, we can apply the steady state approxi- 
mation to eqns. (Z-43) and (2-44) to oM,ain pm and p,_ as 

‘m= Rz + W,, + Ak(w2) + PA, 
1 

(2-50) 



and 

h?z?n= ;mm+ - (2-51) 

where W, = --&rr and W,, = --&J’~ represent the electronic relaxation 
rates of the n-level and the m-level respectively. Here the vibrational mlaxa- 
tion &,sI’g’&~~e and Em~l?~‘~m~m~ have been neglected. This means that 
either the vibrational relaxation is fast so that the vibrational equilibrium is 
established or the vibrational relaxation is so slow that it can be ignored. 
Substituting eqn. (2-51) into eqn. (2-49) ‘yields 

where R, denotes the rate of direct photoionization due to the ~3~ photon 
originating from the n-level of the intermediate electronic excited state. 

For the case W,, S RE (i.e. the case in which the electronic relaxation 
is much faster than the autoionixation), eqn. (2-52) reduces to 

= 
4 n 

RE+& m 5 Ih lfic-~2~21&?a~12 

x Q?mz(~a - 4m I- WExr) + ZEW3 

(w2 - dnn I2 + CK3r) + ZiZW2 1 Pnn (2-53) 

These results for the photoionization yield are similar to the one-photon 
ionization case (comparing with eqns. (2-16) 
case W-<Rz (i.e. the case in which the 
slower than the autoionization), we have 

y= C(RE + &,Awa)~~nn 

and (2-17)). However, for the 
electronic relaxation is much 

n 

Rz+ 2 19218(--2)21w~2 

v hwn3 - UCCiXr) + JCZ(r)3 + 2q,,(w, -&?I> 
C4lWl - C*;)Z)’ + (r=(r) + Rz(r)j2 

(2-54) 

The asymmetric bandshapes in these two cases are somewhat different; the 
second case shows the Fano bandshape [ 41. 

Other cases such as the strong field-weak field case, the weak field- 
strong field case, the strong field-strong field case etc. [3] can be considered 
similarly and will not be given here. 
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It should be noted that, although I, m and n in this section and in Figs. 
1 and 2 have been referred to as representing vibronic or robronic levels of a 
molecule, they can of course also be referred to as higher electronic states 
(such as Rydberg states). In other words, by reinterpreting the models shown 
in Figs. 1 and 2, the theoretical results presented in this section have quite 
a wide range of applications. For example, they can be applied to photo- 
dissociation of van der Waals complexes or laser-stimulated desorption of 
adsorbed molecules. 

3. Discussion 

From Sections 2.1 and 2.2 for one-photon ionization and 
ionization of molecules, we see that the Beutler-Fano-type 

two-photon 
asymmetric 

bandshape will be observed provided U,, # 0 (autoionization matrix 
element) and D, # 0 (dire& photoionization matrix element). In other 
words, Fano’s q parameter is finite. The Beutler-Fano-type bandshape 
disappears if Q + 00; this can happen if either U,, = 0 orD, = 0, but D, Z 0. 
To see the consequence of these conditions, let us consider the one-photon 
ionization case. For the case U,,,, = 0, we have Ez = 0, i.e. autoionization 
does not take place, and eqns. (2-9) and (2-10) become 

%Wl 
at 

+ (Rz + A,)P, + xA,r4nm + c rEth,an, + 5 r$?Pn~ = 0 
m m 

and 

aPmm +A 
at 

mmpmm + ~&,,,P,,,, +CE,i!i’%m~m~ - CCi%n,m = 0 
n m’ n 

where 

(3-l) 

(3-2) 

A 
am + XXr) 

nm ,A_,_? 
?a2 (wL-- a)2 + {r=(r) + Rz(r)}2 

I(~Ifi,(--)ImN2 (3-3) 

&?t =--CA_ 
m 

(3-4) 

Aam =-CA, 
n 

As expected, the photoionization yield is dependent’only on direct photo- 
ionization, i.e. 

y(t) = c Jcaln (3-5) 
n 

Similarly, for the case D, = 0 we have RE = 0, i.e. direct photoioniza- 
tion does not take place. In this case, the MEs are given by 



186 

hln 
(3-6) 

and 

%%?W 
at + (Rz + A,,,&-, + CA,p, - 2 FE& + ~r~‘p,w = 0 (3-7) 

n n m’ 

In this case, the relations given by eqns. (3-3) and (3-4) stiIl hold and the 
photoionization yield is dependent only on autoionization: 

Y(0 = c zz&Wn (3-S) 
m 

It should be noted that for the case q + 00 the MEs given by eqns. (3-2), 
(3-6) and (3-7) are the ConventionaI rate equations [ 6,6] and that the con- 
ventional rate equation approach usualIy cannot provide the Beutler-Fano- 
type bandshape for photoionization. Similar conclusions for q --f 00 can be 
obtained for the two-photon ionization case and will not be discussed here. 

The continuum shown in Figs. 1 and 2 does not have to represent only 
the ionization continuum; it can represent any other type! of continuum 
(e.g. a dissociation continuum or separate ion-pair formation continuum etc.). 
In other words, the theoretical results presented in Sections 2.1 and 2.2 can 
also be applied to other multiphoton processes with the excited electronic 
state coupled to a continuum. 

Several types of autoionization appear in molecular photoionization 
spectra 17 - 91. The kinetic energy of the ejected electron may come from 
the autoionization state by conversion of either the rotational energy or the 
vibrational energy of the ion core [7]. Another common type of auto- 
ionization involves the conversion of the electronic energy of the core and is 
called electrostatic autoionization [S]. One other type of autoionization, 
which can be called the spin-orbit autoionization, results from a transfer of 
the spin-orbit energy of the ion core to the photoelectron kinetic energy [ 91. 

I I I 
62,000 62,503 63,000 

Two-color Energy/ar~-~ 
Fig. 3. The two-color PIE spectrum of the aniline 11 ‘Bz band. 
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Recently, Hager et ~2. [lo] have measured the two-color, threshold 
photoionization spectra of jet-cooled aniline, and observed vibrationally 
selective autoionizing Rydberg structures in these spectra, containing quanta 
of the non-totally symmetric vibrational modes fob, I and 15. Figure 3 
shows the photoionization efficiency (PIE) spectrum for aniline photoionized 
from the I{ ‘Bz transition [lo]. We shall qualitatively interpret this PIE 
spectrum by using the theoretical results presented in this paper as follows. 

Depending on whether W,, > Rz or W,, Q RE, the two-color photo- 
ionization yield can be expressed by eqn. (2-53) or eqn. (2-34). For example, 
for the W,, Q Rz case, we have 

Y= 2 J-GE 
n 

+ f 2 l(~l~(--w,)21&,,>12 -+ 
m RTtl 

x %?-(wz - w-3) + (am2 - l)CCZ(r) + REXr)) 
(w, - dn I2 + CKXr) + REXr)12 1 

Prvl 

where Rg denotes the direct photoionization rate 

(3-W 

(3-10) 

u 
tnlfi(-~2)2l$m)= <nIfi(--2)2l~) + f?fl (4fi(-q)2Id (3-11) 

Equation (3-9) shows that the photoionizaki yield consists of two parts, 
one from the direct photoionization which determines the adiabatic ioniza- 
tion threshold, and the other from the contribution through autoionizing 
states I m}. Notice that the autoionization contribution to the photoionization 
yield is determined by the matrix element (nl6(--w,),l~,> given by eqn. 
(3-11). If the autoionization state Im) is a Rydberg state of high principal 
quantum number, then 0~I6(-~~2)~1rn) is usually much smaller than 
(nld(--02)alc) if c is the lowest ionic state. In this case, the direct photo- 
ionization Rg makes more contribution to Y than that through autoioniza- 
tion given by the second term on the right-hand side of eqn. (3-9). This is the 
reason why one observes a sharp adiabatic ionization threshold due to Rz_ 
In this case, the second term on the right-hand side of eqn. (3-11) becomes 
important and we see that the autoionization matrix element UC, plays an 
important role in determining the Rydberg structures of the PIE spectra near 
the threshold [lo]. 

To interpret the I1 i ‘B2 PIE spectrum of aniline, we use the adiabatic 
approximation as a basis set: 

Im> = %Xl(QI)&s”’ (3-13) 
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and 

Ic) = *,,&,(Q~~,,~J (3-14) 
where @,,, @‘b and Q1,. represent the electronic wavefunctions (see Fig. Z), 
X,(Qr) and XW(Q1) denote the vibrational wavefunctions of the inversion 
mode Qr and &,, O,# and dfV” are the vibrational wavefunctions of ail other 
vibrational modes. Thus for direct photoionization 

where, in the second step, the Condon approximation has been introduced. 
Owing to the fact that the inversion mode is not totally symmetric, we can 
see that the most probable transition is w = 1 and u’ = u provided there is no 
big change in geometry between the lB2 state and the ground state of the 
ion. In other words, the direct photoionixation yields the step-function 
ionization behavior shown in Fig. 3 for the high resolution measurement. 

Next we consider the autoionization contribution to the Ii ‘BP PIE 
spectrum. From eqn. (3-9), we can see that it is determined by the matrix 
elements U, m and {n Ifi(-o&Ic}. Note that for vibrational autoionization 
we have 

(3-16) 

Here again the Condon approximation has been introduced. From eqn. 
(3-16) we can see that the dominant transitions -are w = 0, v” = u’ and w = 2, 
un = vl. However, the latter transition takes place above the threshold. 
Thus, the Rydberg structures shown in Fig. 3 are due to the w = 0, v” = u’ 
transition. In this case, we have 

w%--02)21d = (x,e,.i(~~iIS(--2)2t~~>Ix,e,,~.> 

1 a*cJ 5(-w2)21 a,) = 
391 I 

(x,lQrlx,)(e,,le,,~~} 
0 

(3-17) 

Here the vibronic coupling is introduced. 
vibronic coupling plays an important role 
11’ lB2 PIE spectrum. 

In other words, in this case the 
in the Rydberg structures of the 
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More recently, Kung et al. [ll] have obtained the high resolution 
spectra of new Rydberg states of Hz in the extreme W region by twostep 
doubly resonant excitation (i.e. stepwise resonant two-photon ion-pair 
(H+ + H-) production) followed by H- ion detection._ In other words, their 
experiment can be described by the following scheme: 
Excitutiun 

hvl 
H2 - H2* (R ‘Cz or C ‘ll,) 

M 
H2 + r H2** 

Autoionization 

Ion-pair form2 tion 

H2 *‘+H++H- 

For convenience of discussion, we reproduce their ion-pair production 
spectrum of Hz and the fitted Beutler-Fano ban&h&es in Fig. 4. 

Kung et al. [ll] have fitted the observed Beutler-Fano asymmetric 
band&apes by using Fano’s equation (see eqn. (2-54)). As shown in Section 2, 
Fano’s equation can be used only when we have the weak field-weak field 
caseandW,,+R~. For comparison, we consider the W,, N RR case 

(3-18) 

V*= 9, If= 3 series 

01 I I I I I 
ns734 753 773 m2 811 139830 

TOTAL PHOTON ENERGY km”) 
Fig. 4. Ion-pair production qwctrum of Ha and the fitted Beutler-Fano bend&apes: 
-, calculated; - - . , experimental. 
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in terms of the detunings E, defined by eqn. (Z-19). As was pointed out in 
Section 2, the asymmetric band&ape function given by eqn. (3-18) is some- 
what different from Fano’s bandshape function (see eqn. (2-20)). However, 
both expressions can be made to exhibit the same asymmetric bandshape 
by choosing the two qnrn values as follows: 

cfnm(Y~ = 
km(F) 

1 - qnm( F12 
(3-19) 

where g-(Y) represents the qm value given by eqn. (3-18) while q,(F) 
denotes the q- value for Fano’s bandshape function. For comparison these 
two sets of qm values for the ion-pair production spectrum of Hz are given 
in Table 1. Note that the widths determined from the Beutler-Fano band- 
shapes consist of I’;(r) and RF(r) from both m and n levels (see Appen- 
dix A). 

Also, from eqn. (3-18) (or eqn. (2-52) for the Fano case), we can see 
that, within a small wavelength range, we can assume that the contribution 
from the direct process RE is relatively constant. In this case we can 
determine the ratio of the two neighboring l{n I@- w2j2 I&, >I* values (Fig. 5). 
Forn=25andn=26wefind 

(3-20) 

(3-21) 

TA3LE 1 

Comparison of q,,(F) and qmm( Y) v al ues of the ion-pair production spectrum of I-I2 

n XZ(r) + GE(r) qnmUV= s7nmI Ylb 
25 1.75 0.40 0.95 
26 0.95 0.20 0.40 
27 1.25 0.60 1.75 
28 1.10 0.65 1.60 
29 0.35 0.10 0.35 
30 1.00 0.00 0.00 
31 1.20 -0*30 -0.35 
32 1.50 -0.30 -0.50 
33 0.90 -0.80 -4.50 
34 0.70 -0.80 -4.50 
35 1.00 -0.15 -0.45 

*From ref. 13. 
bOur results. 
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(3-22) 

In this way we can determine the ratio 

1 

2 

c ad-~2M-L78 whc) 
C i 26 

1 I 

2 = 0.21 

C&wC--W2vLn~(~mc) 
I? 25 

and estimate the relative magnitude of the terms (nIfi(-~~)~(rn) and 

;+ 0NW---w,),lC) 
mc 

involved in qnm. 

It should be mentioned that in Fig. 5, in order to fit the experimental 
data, the values of qmn and R”(r) + FE(r) for n = 26 have been modified 
slightly from those given in Table 1 to take the values of 0.67 and 1.00 
respectively. This is due to the interference between the two neighboring 
bands, and indicates that it is important to know the behavior of the con- 
tribution &om the direct photodissociation (or photoionization) and to 
take into account the interference effect in order to obtain accurate qnm 
and I<~I~(-w~)~I~~)~~ values. The widths FE(x) +Rz(r) are relatively 
insensitive to the interference effect however. 

In conclusion, in this paper we have generalized our previous density 
formalism for the treatment of multiphoton ionization of molecules by 
including the effect of multirovibronic levels and have shown how to apply 
this theory to analyze the experimental data. It should be noted that the 
Green’s function formalism for multiphoton ionization of atoms has been 
developed by Lambropoulos and coworkers [12]. A main feature of the 
density matrix method is that it can properly take into account the heat 
bath effect represented by l?c’ in this paper. Thus the theoretical results 
obtained in this paper can also be applied to study photoionization of 

total ohotcn energy (cm4) 
Fig. 5. Calculated ion-pair production spectrum of Ha for n = 25 and n = 26. 
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molecules in dense media. In this case, vibrational relaxation ls often much 
faster than other rate processes so that the vibrational equilibrium is 
established, Then, for one-photon ionization, we may set A, = p&, and 
pmm = p&,, where P, and Pm represent the equilibrium distributions in the 
ground electronic state and the excited electronic state respectively, Z,P, = 1 
and Z:,P, = 1. Equations (2-9) and (2-10) yield 

aPI 
%i- +=pg+bk=o 
and 

aPa 
at 

+ a’p, + b’p, = 0 

where 

a = c P,(R$ + A,) 
?I 

b = ~~PmGLrn + FE’) 
nm 

(3-26) 

(3-26) 

(3-27) a'=zzA-P, 
nm 

and 

b'=CPmRz+Amm-- r 
m i =r 1 ” 

(3-28) 

In this case, all the rate constants are weighted by the equilibrium distribu- 
tions P,, and Pm, and the time-dependent behaviors can be obtained by 
solving eqns. (3-23) and (3-24). The two-photon ionization case can be 
treated similarly and will not be discussed here. 

Another feature of the density matrix formalism of multiphoton 
ionization of molecules is that the competing processes other than photo- 
ionization can be taken into account. Work is in progress to apply this 
formalism to study the photoionixation of liquids and solids. 
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Appendix A: Derivation of eqns, (2-l) - (2-20) 

Consider pm given by eqn. (2-7). Notice that 

= 2Re (A-1) 

Here eqn. (2-3) has been used. Writing k(t) as 

pm(#) = h(w) exp(-itw) + p-(--o) exp(iU) (A-2) 
and using eqn. (2-4) and the rotating wave approximation, we obtain 

(A-3) 



where 

(A-4) 

Equation (A-3) can be written as 

Substituting eqn. (A-5) into eqn. (2-7) yields 

(A-7) 

SimiIarIy, eqn. (2-6) becomes 

kk 
+R~p_+Crmmpkk=O (A-8) 

k 

where 

(A-9) 

and 

1 
Wf0~~“.c--O)U,,WJ -WC,) 

c -= I 
Qlw?a (~Ifi(--)Iha) 

(A-10) 

It is commonly assumed that qnnr = q;, and WI@--w)IJI,) = (nIfi(-WI@,) 
and that Q- is a real number. This assumption wiII be examined in a future 
investigation. 

Using the relations 

exp(ito) (’ ;I.&+R& (A-11) 



and 
* 

exp(ifw) =+&w)ln) 

we can rewrite eqn. (2-8) as 

%nza(~) 
at 

+ {i(o- - W) + RE + rZ)~mn(~) 
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(A-12) 

p_=O 

(A-13) 

Applying the steady state approximation to h(w) yields 

&ivaw) = 
(i/~)(~,I~(w)In}(l+ilq,)p,, -(il~){~/,I~,(.~)In)(l-ii/q~,)hur 

‘i(w, -a) + R& + rg 
(A-14) 

Equations (2-9) and (2-10) are obtained by substituting eqn. (A-14) into 
eqns. (A-7) and (A-8). Notice that 

i<n~~~--W)l~,>(rLmI~(~)l~)ll- i/q,Al-~i/dm) 
i(w, - o)+RE+rE I. 

(A-15) 

2 
A 

ilG$,I~,(~)l~~12~l + 1/qnm2) 
nm=-- 

A2 

Im 
i(0, - a)+Rz+rE I 

(A-16) 

A_=-$ Im 
i IW,I fi,l@ ld12(1. + 1/qk2) 

i(w, - w)+RZ+ryg 
(A-17) 

and 

i<nl~(-_)I~m)(9mI~(~)t~)(l+ i/aLN+ i/a,) 
i(w, - cd)+Rz+rz 

(A-18) 

Here the only assumption inWxh_~ced is that qnm and qh are real. Further 
assumptions of I$, = J/, and qnm = qk will reduce the above expressions for 
A A,, M, A, and A- to those given in Section 2. 

Next we consider the calculation of Rz. Using eqn. (2-3) we find 

R~=J,,+J~ = Rg(r) + iRE(i) (A-19) 

and from eqn. (2-4) we obtain 

(A-20) 



and 

J, = (A-21) 

Substituting eqns. (A-20) and (A-21) into eqn. (A-19) yields 

R=(r) = $(RE + RZ) 

and 

(A-22) 

R=(i)= (A-23) 

Xn other words, R=(r) and R=(i) represent the level width and level shift 
due to autoionization and direct photoionization. Similarly, it has been 
shown that the dephasing constant l?” due to the coupling between the 
system and the heat bath can also be written as [Al, A2] 

FE = r=(r) + W=(i) (A-24) 

Thatis,itcanalsobewrittenasthe summation of the level width and the 
level shift. It should be noted that 

r%(r) = +(rz+rz)+rE(d) (A-26) 

where r=(d) d enotes the pure dephasing. Equation (A-25) indicates that 
l?=(r) has contributions not only from the lifetimes of the m-level and the 
n-level but also from the pure dephasing. 

Next we consider an important case, qm = 0. We find 
1 

(~Ifi(-~)I$m)- = $pnc( --O)~mn~(~na~)= Gm (A) 

Qrv?t c 

~nlfN--w)lJ/m)+ = &&(--W)UemS(W -we,) = &t UV 

A ,A_P-~ rm2CCZ(r) + Rm”(r)l 
nm ti2 (cd:,- cd)2 + {R=(r) + rE(r)12 

An = ~&,,a 
m 

and 

Aam= ~&an 
n 

(Cl 

(D) 

w 
Here for convenience we have assumed that r;, = rk. The above results 
show that for this particular transition n * m the bandshape is lorentzian: 

Y = C(R,M + 2&&q,,, + C (Rm” + 24,.&m w 
n m 
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Appendix B: Derivation of eqns. (2-21) - (2-64) 

First we consider &l(t) given by eqn. (2-31). Notice that 
&l(t) = AI(W) exp(--itW + hr(-0) exp(itwl) 
P-(t) = I-)mn(w~) exp(--itw?) + ~J--o~) exp(itw2) 
and 

(B-U 
(B-2) 

Pm2(t) = pm&W + 02) expC-iHwI + 02): + PA-w1 - w2) expW(wI + wz)} 
(B-3) 

Substituting eqm. (B-l) and (B-3) into eqn. (2-31) and using the rotating 
wave approximation, we find 

aP"l(wl) 
. 

at + {i(w,r - WI) + rR,; + R::f~n,lW + f Qll(wlMm - Pm) 

V,, + Rz/ exp(- itw&,Awl + ~21 = 0 (B-4) 

Notice that 
. 

exp(-itwl) = $ &d--2)2Jnm expWtw2) (B-m 

and 

Jnm exp(-itw2) = 

where 

fi = @wl)l exp(-itw,) + G(-wl)l exp(itwJ + d(w,), exp(-itw2) 
+ 5(- w~)z exp(itw 2) 

Substituting eqn. (B-6) into eqn. (B-5) yields 

(B-7) 

( 
. 

f V,, + RF: exp(-itw,) = * 
) 

i (nIfi(-W2)2l@,) 1 
EL) 

and eqn. (2-34) is obtained by introducing eqn. (B-8) into eqn. (B-4). 
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consider hl( t) given by eqn. (2-32). Again substituting eqns. 

we obtain 
into eqn. (2-32) and using the rotating wave approximation, 

Next we 
(B-l) - (B-3) 

aPrnZ(w + 02) 

at 
+Ci(o,Z - "1--w?) +xi +~~;bZ(~l+ 01) . . 

+c i hAw212 + Jm expWw2) h(W - + P~(c~~VMC~A 
I I 

= 0 
n 

(B-9) 

where we have 

J- =PWw2) = .fi2 L C umcDcn(~2)2 
c 

+ 7mw2 - an) 
I 

(B-10) 
CrS 

It foUows that 
. 

~D-(w~)~ + J,, exp(itw,) = 
. 

where 

Ika>= Im>+ g-F, u’“, Ic) 
2 en 

(B-11) 

(B-12) 

and 

1 
la/fi)C UmcDcnIW2)26(W2 - wcn) 

C -I , 
Qnm <&nIJ3’(w2)2h~ 

(B-13) 

Equation (2-35) for pmr( w1 + 02) is obtained by substituting eqn. (B-11) 
into eqn. (B-9). 

Finally we consider p-(t) given by eqn. (2-33). Substituting eqns. 
(B-2) and (B-3) into eqn. (2-33) yields 

%3?a(w2) 

at 
+ {i(o,- w2)+~~+JczIP,(~z)- wlPmzwl+~2) 

. 

+P?l” ~&dw2)2+=p(itw2)J,, 

. 
-~D-(w~)~+ exp(itw,) Jzm 

= 0 

where 
(B-14) 

(B-15) 



and 

exp(itw*)J& = 

. . 

f awlW2)2 + exp(itw&J_ = ti l WllI%~2)2l~) 1 
(-k) 

and 
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(B-16) 

(B-17) 

(B-18) 

Substituting eqns. (B-17) and (B-18) we obtain eqn. (Z-36). 

Appendix C: Validity of eqn. (2-41) 

The performance of the steady state approximation applied to &I( wl), 
p,,,l(wl + 02) and p-(0,) has been examined in a previous paper [Cl]. Here 
we shall study the additional approximation associated with the multilevel 
system. Using eqn. (2-41), we obtain the improved expressions for p,JtiJ 
and ~mnW2) as 

. 

AIEW) = + &A&+) (C-1) 

and 

--(3/mIfii(w2)2I~> 1- ( &+rm[ +&~mWa) (C-2) 

where Apnr( w 1) and Ap,( wi) represent the correction terms for A~( w 1) and 
pmn (~2) respectively, and they are given by 

AP,,(wI) = - ; KlZ(~l)~ ~~Ifi,(--w,M9hn) P??AWI + w2) 
m 

Frnzto, + w2) 

x c ~-~(ws)~,rr(w1)1(~,I~‘(W2)*(n’) 1+ 
?l’ 1 

( -J--)P_ -P&n) 
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x CFmn~(~2) + Fnrr(Wl)3(~mI~(L32)21n’) 1 ( - &) D?d%h 

+ Fnrl(wl)(~ml~(~*)*ln’} 1 (-3 1 Dn~l(wlPl* W-3) 

+ F,~,(o,){~,I~~~2)2In’) (C-4) 

These correction terms are indeed higher order terms. 
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